W przypadku reprodukcji głównym kryterium jest uzyskanie maksymalnej ostrości rysowania, zatem zazwyczaj wystarcza przymkniecie przysłony o 2-3 działki (lepiej o 2-3 niż 'do oporu', dlaczego - o tym za chwilę). Zapewnia to również najczęściej wystarczającą głębię ostrości. W przypadku obiektów przestrzennych główną bolączką jest zazwyczaj mała głębia ostrości i przysłonę mocno przymykamy, aby głębię zmaksymalizowac.

Aby wyznaczyć głębię ostrości, musimy znać (nie tylko w przypadku makro):

ogniskową obiektywu (f)
przysłonę (F)
nastawioną odległość (y)
średnicę krążka rozproszenia (c)
Wszystkie miary długości podajemy w tych samych wielkościach, jeśli zatem ogniskowa, odległość i krążek rozproszenia będą w mm, to i wyniki uzyskamy w mm.
Pewnych wyjaśnień wymagać może wielkość krążka rozproszenia - otóż teoretycznie, przy założeniu, ze obrazem punktu na obiekcie musi być na kliszy punkt, wielkość głębi ostrości wynosi zawsze 0 - tylko dla jednej konkretnej odległości obrazem punktu będzie punkt (i to niezależnie od przysłony). Dla każdej innej odległości obrazem punktu będzie krążek o pewnej średnicy. Oczywiście w praktyce założenie takie jest nieprzydatne, chociażby ze względu na rozdzielczość filmu - nawet jeśli naświetlimy punkt o nieskończenie małym rozmiarze, to i tak plamka na filmie będzie miała pewne, skończone rozmiary. Zatem przyjmujemy, ze za ostry będziemy uważali obraz dotąd, dopóki obrazem punktu będzie krążek o średnicy nie większej niż pewna wartość graniczna nazywana dopuszczalną średnicą krążka rozproszenia. Wielkość dopuszczalnej średnicy krążka rozproszenia zależy od formatu negatywu i przewidywanej wielkości odbitki. Można to sobie przeliczyć następująco: Jeżeli korzystamy z formatu negatywu 24*36mm i przewidujemy format odbitki np. 13*18cm i chcemy mieć odbitkę ostrą 'jak żyleta' to rozmiar krążka rozproszenia na odbitce nie powinien być większy niż 0.1mm (bo taka jest najmniejsza wielkość szczegółów rozróżnialnych gołym okiem). Powiększenie pozytyw/negatyw wynosi 18cm/36mm=180/36=5, zatem dopuszczalna średnica krążka rozproszenia na negatywie wynosi 0.1mm/5=0.02mm. Oczywiście musimy mieć negatyw, który będzie miał taka rozdzielczość, w przeciwnym wypadku ziarno spowoduje, ze i tak ostrości odbitki nie będzie można docenić. W praktyce w podręcznikach spotyka się zalecenia stosowania max. średnicy krążka rozproszenia 0.03mm dla formatu 24*36mm, 0.06mm dla 6x6cm i 0.075mm dla 6x9cm. Uzasadnieniem dla takiego podejścia jest przyjęcie, ze oko ludzkie odróżnia jako oddzielne obiekty, których kat widzenia rożni się o więcej niż ok. 1'' (minuta kątowa), zaś odbitki ogląda się zazwyczaj z odległości równej ich przekątnej - zatem im większy format, tym większa odległość oglądania i wielkość krążka rozproszenia może być większa - osobiście uważam, ze zamiast kierować się ślepo zaleceniami lepiej pomyśleć i samemu sobie przeliczyć. Znając średnicę krążka rozproszenia można policzyć tzw. odległość hiperfokalną (hyperfocal distance). Jest to odległość, przy nastawieniu której głębia ostrości rozciąga się do nieskończoności.
Wyznaczamy ja w/g wzoru:

h=f*f/(F*c)

Znając odległość hiperfokalną hd oraz odległość na którą nastawiliśmy ostrość d możemy wyznaczyć minimalną i maksymalną odległość miedzy którymi obraz będzie spełniał nasze kryterium ostrości:

ymin=(h*y)/(h+(y-f))
ymax=(h*y)/(h-(y-f))

Należy pamiętać o unikaniu pomieszania jednostek - jeśli dane wprowadzaliśmy w mm to i wynik otrzymamy w mm i możemy zamienić go na m dzieląc przez 1000. Jeśli ymax wyjdzie ujemne, oznacza to, ze dla wprowadzonych danych nasza głębia ostrości będzie się rozciągała 'za nieskończoność'. Oczywiście w przypadku makrofotografii taka sytuacja raczej nam nie grozi

Wyliczmy dla przykładu głębię ostrości, gdy posługujemy się obiektywem f=50mm, nastawiliśmy liczbę przysłony F=16 i chcemy tak dobrać dodatkowy wyciąg mieszka d, aby uzyskać skale odwzorowania S=2. Z negatywu małoobrazkowego planujemy wykonać odbitkę 13*18cm i jak już wcześniej policzyliśmy dopuszczamy krążek rozproszenia 0.02mm.

d=Sf, zatem d=2*50mm=100mm

Skala jest ilorazem odległości obrazowej i przedmiotowej S=x/y, odległość obrazowa jest suma ogniskowej i dodatkowego wyciągu x=f+d, zatem:

y=x/S=(f+d)/S=150mm/2=75mm

Odległość hiperfokalna wyniesie:

h=f*f/(F*c)=50mm*50mm/(16*0.02mm)=7812.5mm (czyli nieco ponad 7.8m).

Dolna i górna granica głębi ostrości wyniosą odpowiednio:

ymin=(h*y)/(h+(y-f))=7812.5mm*75mm/(7812.5mm+25mm)=74.76mm
ymax=(h*y)/(h-(y-f))=7812.5mm*75mm/(7812.5mm-25mm)=75.24mm

Szerokość głębi ostrości wyniesie:

ymax-ymin=75.24mm-74.76mm=0.48mm

W tym momencie chyba nikt z czytających nie ma już wątpliwości, ze przy naprawdę dużych skalach odwzorowania znikoma głębia ostrości stanowi duże utrudnienie w pracy i stosowanie dużych liczb przysłony jest bardzo uzasadnione. Warto przy tym zwrócić uwagę, ze można wykazać, iż dla danych liczb przysłony, średnicy krążka rozproszenia i skali odwzorowania szerokość głębi ostrości pozostaje stała, tzn. zmiana ogniskowej obiektywu wpływa tylko na odległość przedmiotową i wyciąg, a nie na głębię ostrości.
W tej sytuacji wydawać by się mogło, ze obiektywy do makro powinny umożliwiać ustawienie ogromnych liczb przysłony. Faktycznie, maksymalna liczba przysłony jest w nich zazwyczaj nieco wyższa niż w zwykłych obiektywach, ale na ogol nie większa niż 32 lub 45. Wynika to ze zjawiska dyfrakcji światła. Na podstawie tzw. kryterium Rayleigha można wykazać, że wskutek dyfrakcji (ugięcia) światła na krawędziach blaszek przysłony maksymalna możliwa zdolność rozdzielcza obiektywu R o przysłonie F dla światła o długości fali n wynosi:

R=0.823/(F*n)[linii/mmm]

Jeśli przyjmiemy długość fali światła 555nm (mniej więcej środek widzialnego widma) to zdolność rozdzielcza wyniesie:

R=1482/F[linii/mm]

Zatem dla liczb przysłony otrzymujemy odpowiednio:

F8 - 185linii/mm
F11 - 135linii/mm
F16 - 93linie/mm
F22 - 67linii/mm
F32 - 46linii/mm
F45 - 33linie/mm

Oczywiście wyliczone wartości są maksymalnymi możliwymi wartościami teoretycznymi, w praktyce ze wzgl. na niedoskonałość korekcji optycznej obiektywu uzyskiwane rozdzielczości (szczególnie dla mniejszych liczb przysłony) są znacznie gorsze. Jak zatem widać, przy dużych liczbach przysłony prawa fizyki zaczynają w istotny sposób ograniczać zdolność rozdzielczą obiektywu. Jest to przyczyna, dla której wiele obiektywów dobrej klasy osiąga najlepszą ostrość rysowania dla przysłon ok. 8-11 i większe przymykanie przysłony przy reprodukcji nie ma sensu. Przy obiektach trójwymiarowych zwykle bardziej przysłonę przymykamy, gdyż zysk na głębi ostrości jest bardziej istotny niż spadek ostrości rysowania spowodowany dyfrakcją. W tym miejscu mała dygresja - spotkałem się z publikacjami testów obiektywów, gdzie pisało jak byk, ze obiektyw utrzymuje zdolność rozdzielczą ponad 90linii/mm w całym zakresie przysłon od 4 do 22. Wyniki takie świadczą tylko o nierzetelności ich autorów - praw fizyki niestety oszukać się nie da !!!

Źródło.
http://www.fotografia-przyrodnicza.art.pl